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Utilizing an extended Hubbard-type Hamiltonian which incorporates both 
nearest-neighbour Coulomb repulsion and exchange interactions, we have 
studied the energy dispersion of the lowest elementary excitation from the 
ferromagnetically aligned state of quasi one-dimensional alternant hydrocar- 
bon networks. It was found that the main effect of the long range Coulomb 
interaction may be thought of as a renormalization (screening) of the on-site 
Hubbard integral. This implies an enhancement of the kinetic exchange term 
and impairs the stability of the ferromagnetic state towards single spin inver- 
sions. However, for physically relevant values of the parameters entering the 
model Hamiltonian, the collective spin excitation represents a magnon, whose 
energy band lies above the reference value pertaining to the magnetically 
saturated configuration. 

Key words: Organic magnetism - -  Alternant polymers - -  Magnon - -  Effective 
Heisenberg exchange 

1. Introduction 

In two previous papers [1, 2] the authors dealt with a special class of polymers 
exhibiting a system of conjugation to which no Kekul6 formula [3] can be 
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attributed. For the latter reason such organic systems with conjugated ~- electron 
networks were termed alternant nonclassical polymers (ANCP). 

In general, an alternant hydrocarbon is characterized by a partitioning of its 
atoms into two disjoint subsets of n* starred and n ~ unstarred atoms, such that 
n * + n  ~ n, where n denotes the total number of atoms in the system. A par- 
ticularly interesting class of alternant hydrocarbons is comprised by conjugated 
networks with n* # n ~ see, e.g. polymers II, IV, V and VI of [2]. 

Several theoretical investigations on the ground state spin multiplicity of finite 
hydrocarbon oligomeres have been carried out recently. Utilizing configuration 
interaction calculations (CI) for small alternant molecules (biallyl, triallyl, etc.) 
based on the Hubbard and Pariser-Parr-Pople (PPP) models and a degenerate 
perturbation cluster expansion approach for the Hubbard model Klein et al. [4] 
showed that the ground state spin amounts to 

S = In* - n~ 
a conjecture made earlier by Ovchinnikov [5]. In a related work based on the 
PPP Hamiltonian Koutecky et al. [6] furnished additional theoretical support 
for the existence of hydrocarbon molecules with high-spin ground state 
configuration. 

In 1983 Teki et al. [7] succeeded in detecting by ESR spectroscopy an aromatic 
hydrocarbon phenylenebis ((diphenylmethylen-3-yl)methylene) with a nonet spin 
multiplicity (S = 4) in the electronic ground state. The magnetic alignment of the 
~- electrons at the bridge sites of the tetradiphenylcarbene is further stabilized 
by the ferromagnetic exchange interaction between these ~- electrons and the 
localized nonbonding electrons at the bridge sites. However, the existence of 
high (macroscopic) spin (S ~ N) ground state configurations in extended hydro- 
carbon networks (polymers) remains an important challenge both for theorists 
and for the experimental community. 

In [1] and [2] the band structure of a series of ANCP's was studied by taking 
into account electron correlation within the AMO (Alternant Molecular Orbitals) 
version of the extended Hartree-Fock method. All investigated polymers exhibit 
the same characteristic band scheme comprising full BMO (Bonding Molecular 
Orbitals) bands, empty ABMO (Antibonding Molecular Orbitals) bands and an 
infinitely narrow NBMO (Nonbonding Molecular Orbitals) band. The occurrence 
of latter is the most conspicuous feature of the band pattern of the alternant 
non-classical polymers. 

In [1] an attempt has been made to draw some conclusions on the energy 
dependence upon the total spin Sz component, which is determined by the spin 
configuration in the NBMO band. Although the calculations of [1] shed some 
light on the 'energy' behaviour with respect to spin reversion in the NBMO band 
the physical relevance of the matrix elements of the Hamiltonian displayed in 
this work (cf. Table 1 and Fig. 2 in [1]) is rather limited. Strictly speaking, the 
matrix elements displayed in Table 1 do not depend merely on the number of 
inverted spins p but also on the specific configuration {kil, ki2,- �9 . - ,  kip} of Bloch 
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states (/qc 1BZ) to which up-spins are assigned. The problem parallels the 
calculations by Durand et al. [8] who showed that the diagonal matrix elements 
decreased drastically in value with increasing alternation in the spin distribution. 

To remedy the aforementioned difficulty we take in the present paper a rather 
different approach to study the stability of the saturated ferromagnetic state. Thus 
proceeding from a fully aligned NBMO band we consider the spectrum of the 
elementary excitations in dependence of the physical parameters entering the 
single band NBMO Hamiltonian. 

The paper is organized as follows. In Sect. 2 we introduce the Hamiltonian 
incorporating all relevant Coulomb and exchange interactions. Section 3 deals 
with the spectrum of  the low-lying elementary magnetic excitations and some 
final comments and conclusions are presented in Sect. 4. 

2. The elementary excitation spectrum 

The infinite degeneracy in the NBMO band of ANCP's within Hfickel MO theory 
is a consequence of the topological structure of their ~- electron networks. This 
is mathematically reflected by the Coulson-Rushbrooke theorem [9] based on 
the equivalence of the Coulomb integrals at the different sites. However, in a 
real polymer the o--core and the fully occupied BMO bands will inevitably cause 
a widening of the NBMO band. Different substituents will have a similar effect 
towards removing the band degeneracy. A calculation carried out in [2] shows, 
however, that the splitting remains small being of order of magnitude w = 10 -1 eV. 
Bearing in mind that for a tight-binding band the band width w is connected to 
the resonance (hopping) integral fl by: w = -2zfl, with z the number of nearest- 
neighbour atoms, one realizes that this implies an effective resonance integral 
flNBMO which might be of comparable size or even smaller than the exchange 
interaction integral in the NBMO band. Since magnetic order is known to arise 
from a nonzero exchange interaction [10, 11] the competition of the nearest- 
neighbour Coulomb exchange JNBMO and flNBMO is of crucial importance for 
the type of magnetic correlation. To avoid cumbersome notation we drop 
in the following the subscript NBMO and introduce the band Hamiltonian in 
the Wannier representation 

H = ~  Y. ~,,,,,a+,,o_a,,~,+�89 ~ ~ U(n-m)a~,~a,,+~,a,,o_,a,,,~ 
o- m , n  or, or" m , n  

+�89 Z ~ J(n-m)a+,,,~a+~,~,a,,~,an~, (2.1) 
o',o-" m ~ n  

where + an~ ( a ~ )  is the creation (annihilation) operator for an electron at the 
lattice site (monomeric unit) R, and/3ran are the corresponding Coulomb (m = n) 
and resonance (n # m) one-electron integrals. The hopping matrix element/3,,n, 
m # n, reflects the electron transfer between states at the ruth and nth unit site 
(monomer). The last two terms in (2.1) describe the e-e interaction with U(n - m) 
the two-center Coulomb integral and J ( n -  m) its exchange counterpart. For the 
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one-electron part of H we shall adopt the tight-binding (Hiickel) approximation 

I i  for m = n 
titan = for m, n nearest neighbours (2.2) 

elsewhere. 

Now, before we pass to the Bloch representation by means of the Fourier 
transform 

+ N-1/2 Z a,~ = exp (-ikR,)a~s (2.3) 
g 

it is expedient to introduce the electron-hole (e-h) operators p~(q) by 

p~( q) = a~s (2.4) 

Since + aL~ (aL~) creates (annihilates) an electron in the [ko-> state, the operators 
(2.4) refer to a pairing of a spin-up electron in the state [k> with a spin-down 
hole in the state Ik+q> such that the total quasimomentum of the pair is hq. 

By virtue of the fact that the Hamiltonian (2.1) conserves the number of spin-up 
(spin-down) electrons, the number density operators N~, o-= a, /3, are good 
quantum numbers, i.e. they are constants of motion 

[N=, H]_ =0 (2.5) 

with 

N ~ - - E  § a,~a.~ = E aLak~. (2.6) 
n k 

In view of this we introduce now the subspace XM of the complete Hilbert space 
as the subspace spanned by the simultaneous eigenvectors of H and N,  for a 
fixed eigenvalue, M, of N~. This implies that for any vector ]+M > C XM the 
condition is met: SzI~PM > = h ( M - N / 2 ) l q ~  > .  Then in X M the Hamiltonian 
(2.1) can be expressed in terms of the e-h operators (2.4) only 

HM = Eo + ~ ~ [M-ltok(q)~Lk'--~-~k k'(q)]P+(q)Pk'(q) 
k,k'  q 

2 

+�89 O(q) ~ F~+(q)Fi(q), (2.7) 
q i = l  

where 

wL(q) = Uo+ Y~ J(n)+eL(q)  (2.8) 
n # O  

with Uo = U(n = 0) the on-site Coulomb repulsion. The e-h energies eL(q) are 
given by 

ek(q ) = ek -- ek+q ' (2.9) 

where the one-particle Bloch energies ek are 

ek = /3 F, cos (kR,) ,  (2.10) 
< n,O> 
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with (n, 0) indicating summation over the nearest neighbours of a fixed site (e.g. 
R1 = 0), which in the one-dimensional case reduces to 

ek =2fl  cos (ka), (2.11) 

a standing for the lattice spacing. The quantity f~k-k'(q) reads 

f~k-k'(q) = U(k - k') + J(q), (2.12) 

where U(k) and J(q) are the Fourier transforms of the two-electron Coulomb 
and exchange integrals, respectively (cf. Eq. (2.1)) 

U(k) = N - '  2 U(n) exp[-ikR,], (2.13a) 
n 

J(q) = N - '  • J(n) exp[-iqR,]. (2.13b) 
n # O  

The last term in Eq. (2.7) describes the interactions between different e-h pairs 
which is easily seen from the form of the operators Fi(q), i = 1, 2 

F+(q) = m - '  Y~ p~, (k+q)pk,(k), (2.14a) 
k,k' 

F~-(q) = M -1 2 p~,(k+ q)pk,+q(k). (2.14b) 
kok' 

Finally U(k) reads (cf. Eqs. (2.13)) 

(Y(k) = U ( k ) - J ( k )  (2.15) 

and E0 is defined by 

E 0 = a u + � 8 9  2 [ U ( n - m ) - J ( n - m ) ] .  (2.16) 
rn, n 

Our goal now is to investigate the energetic stability of the state ferromagnetically 
aligned 

I~bo> = [-[ a~-$[vac>, (2.17) 
k ~ I B Z  

with respect to elementary excitations within the NBMO band. Then the quantity 
Eo is immediately revealed as the eigenvalue of H corresponding to the ferromag- 
netic state (2.17) which now plays the role of a new vacuum state. Since we are 
interested in the spectrum of the elementary excitations (Sz = - h [ N / 2 - 1 ] )  we 
confine in the following to the dynamics in the subspace XM_a. Due to the fact 
that the pair interaction term of (2.7), cf. also Eqs. (2.14), annihilates states with 
one reverted spin H~ takes the following simple form 

H~ = Eo+ Z 2 [wk(q)rkk'--12k-k'(q)]p{(q)pk'(q). (2.18) 
k , k '  q 

By virtue of the hermiticity of the matrix 

Wkk,( q) = wk( q)rkk'- ~k-k'( q) (2.19) 
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/-/1 is easily diagonalized by means of the unitary transformation U(q), with 
matrix elements uk,(q), leading to the collective excitation 

Iq~p(q) > = R~(q)lOo > ,  (2.20) 

with 

e ; ( q )  § =2 qp(q)Pk(q). (2.21) 
k 

The wave functions Ukp(q), referring to the internal structure of the elementary 
excitations, and the corresponding energy spectrum are determined by the follow- 
ing eigenvalue equation 

[o~k(q) - Ep(q)]ukp (q) = ~ f~k-k'(q)uk'p(q), (2.22) 
k '  

where the quantities wk(q) and f~k(q) were defined by Eqs. (2.8) and (2.12), 
respectively. Eq. (2.22) yields N different solutions for the energy eigenvalue 
Ep(q) and N 2 solutions for the wave functions Ukt,(q) ,  p = 1, 2 , . . .  N, k~ 1BZ. 

3. The eigenvalue equation for the collective mode 

A detailed study of the elementary magnetic excitation spectrum shows [12] that 
it consists of a quasicontinuum (of N - 1  energy eigenvalues) and an isolated 
solution El(q) lying below the bottom of the continuum. Hence, in the study of 
the energetic favourability of the excited states with respect to the fully aligned 
band it is sufficient to restrict the considerations to the lowest band of collective 
excitations. 

To make Eq. (2.22) amenable to a relatively simple numerical treatment, instead 
of the general Hamiltonian (2.1) (see also Eqs. (2.7) and (2.18)) we utilize in the 
present work an extended Hubbard-type Hamiltonian. To this end we introduce 
some simplifications which, however, do not impair the physical essence of the 
Hamiltonian. As in the conventional Hubbard model [13, 14] we consider the 
on-site e-e repulsion Uo, thus maintaining the competition between the interaction 
Uo, tending towards covalent configurations, and the hopping integral/3, which 
tends to destroy the single-site occupation. However, our model improves upon 
the Hubbard approximation by taking into account nearest-neighbour Coulomb 
repulsion integrals U~ and exchange interaction matrix elements J, the latter 
competing with the kinetic term fl in favour of ferromagnetic correlation. Thus 
we obtain the following Schr6dinger equation for the unknown wave functions 
Ukp and the corresponding band energy E~ 

[wk(q) -Ep(q)]uke(q) = (Uo+2J cos q a ) N - ~  uk,p(q) (3.1) 
k'  

+2 U~N -~ ~ cos [ ( k -  k')a]u~,p(q), 
k '  

where the pair energies wk(q) are given by 

o~k(q) = Uo+ 2J + 2fi sin (qa/2) sin (ka + qa/2). (3.2) 
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Since E~(q) lies far below the continuum of pair energies, wk(q) (see Fig. 7 of  
[12]), none of the terms [a~k(q)-E~(q)] vanish for k~ 1BZ. Thus, division of 
Eq. (3.1) by the factor [wk(q ) -  El(q)]  and subsequent integration over k, - ~ - <  
ka <- ~r, yields 

x/x 2 -  16/3 ~ sin s (qa/2) = Uo+ 2J cos qa + UaL(q)[x + x/x 2-16/3 2 sin 2 (qa/2)]. 

(3.3) 

Here the unknown function L(q) has been introduced by 

F, sin ( ka + qa/2)Ukl( q) 
L ( q ) -  k (3.4) 

2/3 ~ sin (qa/2)uk~(q) ' 
k 

and x is related to the energy eigenvalue E1 through 

El(q) = x(q) + Uo+ 2J. (3.5) 

Fortunately, no explicit knowledge of the wave functions ukl(q) appearing in 
L(q) is necessary in order to solve Eq. (3.3). This is easily realized by inserting 
Eq. (3.2) into the Schr6dinger equation (3.1) and integrating the latter over k, 
-~r < ka <- 7r. One obtains 

E~(q) = 4[J + 2/32L(q)] sin 2 (qa/2), (3.6) 

which implies immediately E~(q = 0)=  0. Therefore we can concentrate on the 
solution of the eigenvalue problem for q ~ 0, where L(q) is well defined, see Eq. 
(3.4). Eliminating L(q) from Eqs. (3.3) and (3.6) we finally arrive at the following 
identity for the unknown function x(o)), o~ = qa, 

~/x2- f2(w)[ f2(w)-2Ulx-2Ulg(o))]= 2U~[x2+g(o))x]+g(o))f2(w), (3.7) 

which holds for all o) ~ 0 and -Tr < o) <- 7r. Here the following abbreviations have 
been introduced 

f (w)  =4/3 sin (oJ/2) (3.8) 

and 

g(w) = Uo+2J  cos o9. (3.9) 

The algebraic Eq. (3.7) has been solved numerically for a fixed value of the 
Hubbard parameter Uo = 10 eV, while the nearest-neighbour Coulomb integral 
was varied within the range 0-5 eV. For every given value of U1 several solutions 
for E~(w; U1) have been calculated, corresponding to different pairs of values 
of the resonance integral /3 and the exchange interaction J, respectively. To 
facilitate the overview of the plots exhibited in Sect. 4, the different (/3, J)-pairs 
were enumerated and are displayed in Table 1. The same numbers, as those 
assigned to the six (/3, J)-choices of Table 1, have been used to mark the band 
energy E~(o); U1 = const.). 
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Table 1. Enumerated (~,J)-pairs (valuesin eV).l~listhe hopping parameter 
and J the exchange integral 

C. I. Ivanov et al. 

No. 1 2 3 4 5 6 

let 0.5 0.2 0.2 0.5 1.0 0.6 
J 0.1 0.1 0.2 0.001 0.1 0.1 

4. Numerical  results and discussion 

The numerical solution of Eq. (3.7) reveals that the dispersion curve E~(w), 
- ~ - <  ~-< ~-, maintains its qualitative behaviour with increasing values of the 
nearest-neighbour Coulomb repulsion U1. For the sake of illustration (Fig. 1) 
we have plotted the energy Es (~o) of the lowest excitation band for three different 
values of U1 : 0.5, 3 and 5 eV. 

The enumeration of the different curves corresponds to the order of the (/3, J)-  
parameter-pairs as displayed in Table 1. The band energy Es(o~) is an even 
function of w, with E l (0 )=0 ,  and attains its extreme value (maximum or 
minimum) at the boundary of the Brillouin zone: oJ = ~-. E(~-)>  0 implies that 
the elementary excitation is placed energetically higher than the ordered ferromag- 
netic state, represented graphically by the horizontal line E = 0. In turn EI(~-) < 0 
entails destabilization of the magnetically saturated state with respect to single 
spin inversions in the NBMO band. Due to assessments carried out in previous 
work [ 13] the ANCP's are characterized by a nearest-neighbour exchange interac- 
tion J ranging from 0.1 to 0.2 eV, while the next-to-nearest-neighbour exchange 
term is one or two orders of magnitude smaller than Z Therefore, in our calcula- 
tions we have restricted the variation of J to the physically significant region 
J~<0.2 eV. 

Since the quantity El(Tr) provides a measure for the energetic favourability of 
the lowest elementary excitation, and hence for the stability of the ferromagneti- 
cally aligned state Itpo > toward spin inversion, we considered it worthwhile to 
study the dependence of E~(~-) on the nearest-neighbour repulsion parameter 
Us. The interrelation E~(Tr) versus /_/1 has been plotted in Fig, 2 for all six 
(fl, J)-pairs  of Table 1, with Us ranging from 0 to 5 eV. 

It is evident from Fig. 2 that in all cases El(Tr ) decreases monotonously with 
increasing values of U~. In the cases (1)-(5) no qualitative changes occur, in the 
sense that Es(Tr) maintains its sign for all values of [/1. However, in the case 
(6), I/31 = 0.6 ev and J = 0.1 eV, EI(~-) undergoes a dramatic variation with increas- 
ing Ul-values. While the excitation energy EI(~') remains positive in the interval 
U1 < 2.85 eV, at the point U1 = 2.85 eV the elementary excitation state and the 
saturated nlagnetic state ]~bo > become accidentally degenerate. For values greater 
than the critical value Ul=2 .85eV the collective excitation energy Ea(Tr) 
decreases below the horizontal line E = 0, i.e. the ferromagnetically aligned state 
is destabilized by single spin inversions in the NBMO band. 
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Fig. 1 a--c. Energy dispersion of the lowest elementary excitation band. a U~ = 0.5 eV; b U 1 = 3.0 eV; 
e U~ = 5.0 eV. The curves (1.)-(6) correspond to different (/3, J)-pairs of values of the resonance and 
exchange integral, respectively, as given in Table 1 
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Fig. 2. Ul-dependence of the extremal value 
of the excitation band energy E(n-) for 
different values of  the resonance integral/3 
and the exchange interaction J. U 1 ranges 
between 0 and 5 eV 

Comparison of plots (2) and (3), or (1) and (4), shows that for a fixed value of 
the resonance integral/3 the energy EI(~-) increases nearly proportionally to J. 
This effect is to be anticipated on general grounds, since according to the theory 
of magnetism [ 10, 11 ] J tends to a ferromagnetic alignment of the electron spins. 

The qualitative differences in the behaviour of the extremal value EI(~-) with U1 
may be entirely attributed to the variation of the resonance integral/3. For small 
/3-values, [/3[-<0.2 eV, see curves (2) and (3), EI(~-) drops linearly with U1, the 
slope being about - 7  �9 10 -3 .  However, for larger values of [/3[ (0.5 to 1.0 eV) the 
quantity Et(~r) begins to diminish faster than linearly, see plots (1) and (4)-(6). 
Thus in the case (5), where 1/31= 1 eW, the (average) slope equals -0.12 which is 
more than a factor of 102 larger than the slope of curves (2) and (3). 

The sequence of the plots (2), (1), (6) and (5) illustrates the decrease of Ea(Tr) 
with/3 for a fixed value of the exchange integral J. This effect is accounted for 
by the fact that the effective electron mass me~ is inversely proportional to 
the width w = -2/3 of the NBMO band. Or, paraphrasingly, the mobility of the 
electrons in the NBMO band rises linearly with /3 and tends to destroy 
the single-site occupation (Ising configurations) in the polymer chain. 

Curves (4) and (6) visualize the crucial role of the competition between the 
exchange integral J and the hopping parameter i/3]. Although in the latter case en- 
hancement of the electron mobility is to be expected (due to the larger value of 
1/31 = 0.6 eV), the corresponding El (~r)- curve lies above that pertaining to case (4). 
For U~<2.85 eV the single spin inversions in case (6) become energetically 
disadvantageous compared to the fully aligned state I~bo>, see horizontal line 
E = 0. This is attributed to the sizeable ferromagnetic correlations within the 
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NBMO band, originating from the relatively large value of J in case (6), J = 
0.1 eV, which is greater by a factor of 102 than the corresponding value of J in 
case (4). 

Thus the numerical results lead us to the conclusion that the long-range Coulomb 
interaction lowers the energy of the collective excitations and thus brings about 
a relative impairment of the stability of the ferromagnetically aligned state with 
respect to spin inversion in the localized band of the ANCP's. 

To form a picture of the quantitative impact of the nearest-neighbour Coulomb 
interaction U1 on the effective Heisenberg exchange interaction we introduce at 
this stage the quantity U~ 

Us(w) = Uo+ZJ+L-S(q), (4.1) 

where L(q) is defined by Eq. (3.4). This now enables us to rewrite Eq. (3.6) in 
the following form 

El(w) = 4Je~(oJ) sin a (w/2), (4.2) 

where the Heisenberg exchange interaction reads 

2/3"- (4.3) 
Jelr(t'~ = J -  U -  ~rl(o)) + 2 J  cos o9" 

In this way the effect of the long-range Coulomb interaction can be studied on 
the behaviour of the quantity Ul(w), which had been plotted in Fig. 3. 

To visualize the variation of ~rl(w ) with U1 we present here three different plots: 
a) UI=0.5eV, b) U I = 3 e V  and e) UI=5eV.  The marks on the curves for a 
fixed Ul-value coincide with the (/3, J)-pair-enumeration introduced in Table 1. 
Fig. 3 shows that U~(w) is an even function of w and its value at the origin Ua(0) 
is equal to the parameter U~ itself. The function Ul(W) drops monotonously 
within the interval 0-< oJ _< ~- thus reaching its minimum at the boundary of the 
Brillouin zone. 

To illustrate the deviation of Us(w) from the nearest-neighbour repulsion integral 
Ua (Eqs. (4.1) and (4.3)), we have exhibited in Fig. 4 the plot Us(r versus Us 
for U1 <~ 5 eV and different values of the/3 and J integrals (see Table 1). 

To facilitate the discussion we have depicted, in addition, the linear function 
f(U~) =/21 by a dashed line. The plots in Fig. 4 reveal a very insensitive variation 
of Us(~) with J. Thus the curves (2) and (3), which are characterized by the 
same value [131=0.2 eV and different values J=0 .1  and 0.2 eV, respectively, 
virtually coincide within the scale chosen (according to the numerical calculation 
the plot (2) lies 2.5 10 -3 eV higher than (3)). The same is true of curves (4) and 
(1), where 1/31 = 0.5 eV while the exchange integrals differ by a factor 102, being 
0.001 and 0.1 eV, respectively. 

Next we consider the behaviour of /)1(7r) for fixed values of the parameter/3. 
Figure 4 shows a linear variation of ~ra(zr) with Us for small values of the 
resonance integral (I/31_< 0.2 eV), see curves (2) and (3), whereas for larger values 
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Fig. 4. Graphical representation of the deviation of L]I(~T) from the nearest-neighbour Coulomb 
integral U 1 : 0  < Ul-<5 eV. The auxiliary function f ( U  0 = U 1 is depicted by a dashed line. The 
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Fig. 5. Variation of the deviation A U 1 = U~ -/~1 (~r) with increasing values of the resonance parameter 
Jill for U 1 =5 .0eV and J = 0 . 2  eV 

of ]/3], see e.g. plots (6) and (5), UI(~) increases slower than linearly with rising 
values of U1. The slope of the curves decreases immaterially with 1/31, thus 
dropping from 0.99 to 0.87 while 1/31 increases from 0.2 to 1 eV. This indicates a 
very slow variation of the deviation A U1 = [ U1-  U~(~r)] with U~. Thus, the most 
relevant information gained from Fig. 4 consists in the strong dependence of the 
deviation A U~ on the value of the resonance integral /3. The calculation shows 
that A U~ rises slightly faster than quadratically while the parameter 1/31 increases 
from 0 to 1 eV. This behaviour is illustrated in Fig. 5 for the following fixed 
values of the remaining parameters: U1 = 5 eV, J = 0.2 eV. 

To conclude, we present an attempt at fitting an analytical expression to the exact 
numerical solutions El(to) of Eq. (3.7), see also Fig. 1. To this end, we try the 
following ansatz for the quantity (4.1) 

Ul(to)  = a + b cos to (4.4) 

and determine the coefficients a and b of  the above conjecture by means of its 
values at to = 0 and at the boundary to = ~r of the Brillouin zone. This yields 

a = [ U a +  Ua(~)]/2, b = [ U , -  Ua('n')]/2, (4.5) 
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Fig. 6. Graphical representation of the 
conjecture E~(oJ), see Eq. (4.6), for the 
lowest excitation band for U~ = 5.0 eV and 
different choices for the (/3, J)-pairs, 
according to Table 1. Crosses (+) represent 
corresponding numerical values 

leading to the following explicit expression for the excitation band energy 

[ 2/32 ] sin2 (w/2). (4.6) 
E~(w)=4 J U o - a + ( 2 J - b )  coso) 

The prime at E has been used to distinguish between the guessed curve E~(o)) 
and the exact relation (4.2). 

To elucidate the accuracy of the tentative dispersion relation (4.6), in Fig. 6 we 
have presented the E~-plots for U1 = 5 eV and for all (/3, J)-parameter sets of 
Table 1. 

By way of comparison, we have marked by crosses the corresponding numerical 
solutions obtained from Eq. (3.7). Fig. 6 reveals a striking agreement between 
the suggested dispersion relation (4.6) and the previous numerical results, see 
also Fig. 1. 

The shortcoming of the ansatz (4.4) is the fact that the quantity Ul('/7"), entering 
expressions (4.5), is an implicit function of the energy El(o)) and hence cannot 
be determined without recourse to the solution of Eq. (3.7). However, by reference 
to Fig. 3 it follows that for small values of the resonance integral, 1/31  0.2 eV, 
the relation Ul(~r)= Ua holds and hence: a = U~ and b = 0. Thus, bearing in 
mind that the ANCP's under consideration exhibit a profoundly narrow NBMO 
band, w-< 0.4 eV [2], the lowest-excitation band can be correctly reproduced by 
the expression 

E~(o)) =4  J - / ~ o + 2 J  cos o~ sin2 (o)/2), (4.7) 
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where the renormalized Hubbard parameter Uo = Uo-  U1 has been introduced. 
As it is known an energy dispersion relation of the form (4.7) pertains to a 
magnon (spin-wave) collective excitation, exhibiting the characteristic ~o2-depen - 
dence for small values of o) [16]. Eq. (4.7) reveals that the long-range Coulomb 
interaction brings about an enhancement of the kinetic exchange term [10, 11] 
in comparison to the Hubbard case U1 = 0 

/k in  z 

given by 

A J k i  n = f H u b  " ' k in  

where 

j H u b  __ 
kin 

2 ~  2 

U0 + 2J cos ~o 
(4.8) 

2/32 (4.10) 
Uo + 2J  cos o) 

and c~ = Uo/U1. The replacement of (Uo+2J)/U1 by c~ in Eq. (4.9) is justified 
in view of the fact that J is at least a factor of 10 smaller than the on-site Coulomb 
repulsion Uo. 

In summary, we would like to reiterate the main results of the presented study 
on the elementary spin excitations in ANCP's: 

(i) Utilizing an extended Hubbard-type Hamiltonian, which incorporates both 
nearest-neighbour Coulomb repulsion terms U1 and exchange interactions J, we 
have calculated numerically the energy-dispersion relation for the lowest (collec- 
tive) spin excitation. 

(ii) The calculations imply that the long-range Coulomb repulsion lowers the 
excitation band energy, which amounts to impairing the stability of the ferro- 
magnetically aligned state towards spin inversion in the NBMO band. 

(iii) A strikingly precise agreement has been achieved by fitting an analytical 
formula to the exact numerical results. The explicit expression for the energy 
dispersion of the lowest excitation band, see Eq. (4.7), reveals that the main 
impact of the long-range Coulomb repulsion may be thought of as a renormaliz- 
ation (screening) of the on-site Coulomb parameter Uo, leading to an enhance- 
ment of the kinetic exchange term, see Eq. (4.9). The established renormalization 
of the Hubbard parameter to U = U0-  U~ is consistent with the earlier results 
by Paldus et al. [17], who used a value of  U = 5  eV in their Hubbard model 
considerations. 

(iv) The lowest excitation mode is found to represent a magnon (spin-wave), 
propagating through the one-dimensional crystal. The stability of the saturated 
magnetic state, with respect to the magnon, depends on the competition between 
the exchange interaction J and the kinetic exchange term (4.8) characterizing 

U 1 T H u b  1 
- -  a k i n  1 '  (4.9) 

(/o+ 2J cos o) a - 
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t h e  A N C P .  T h i s  is r e f l e c t e d  b y  t h e  s ign  o f  t h e  n e t  H e i s e n b e r g  e x c h a n g e  i n t e r a c t i o n  
eft 

J = J - J k i n ,  see  Eq.  (4 .8) .  
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